Copied to
clipboard

G = C15×C22⋊C4order 240 = 24·3·5

Direct product of C15 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C15×C22⋊C4, C222C60, C30.52D4, C23.2C30, (C2×C6)⋊1C20, (C2×C60)⋊4C2, (C2×C4)⋊1C30, (C2×C20)⋊2C6, (C2×C30)⋊5C4, (C2×C12)⋊2C10, (C2×C10)⋊6C12, C2.1(C2×C60), C6.12(C5×D4), C2.1(D4×C15), C30.62(C2×C4), C6.10(C2×C20), C10.12(C3×D4), C10.17(C2×C12), (C22×C10).3C6, (C22×C30).1C2, (C22×C6).1C10, C22.2(C2×C30), (C2×C30).52C22, (C2×C6).13(C2×C10), (C2×C10).13(C2×C6), SmallGroup(240,82)

Series: Derived Chief Lower central Upper central

C1C2 — C15×C22⋊C4
C1C2C22C2×C10C2×C30C2×C60 — C15×C22⋊C4
C1C2 — C15×C22⋊C4
C1C2×C30 — C15×C22⋊C4

Generators and relations for C15×C22⋊C4
 G = < a,b,c,d | a15=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 92 in 68 conjugacy classes, 44 normal (20 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, C6, C6, C6, C2×C4, C23, C10, C10, C10, C12, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C20, C2×C10, C2×C10, C2×C10, C2×C12, C22×C6, C30, C30, C30, C2×C20, C22×C10, C3×C22⋊C4, C60, C2×C30, C2×C30, C2×C30, C5×C22⋊C4, C2×C60, C22×C30, C15×C22⋊C4
Quotients: C1, C2, C3, C4, C22, C5, C6, C2×C4, D4, C10, C12, C2×C6, C15, C22⋊C4, C20, C2×C10, C2×C12, C3×D4, C30, C2×C20, C5×D4, C3×C22⋊C4, C60, C2×C30, C5×C22⋊C4, C2×C60, D4×C15, C15×C22⋊C4

Smallest permutation representation of C15×C22⋊C4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(16 81)(17 82)(18 83)(19 84)(20 85)(21 86)(22 87)(23 88)(24 89)(25 90)(26 76)(27 77)(28 78)(29 79)(30 80)(61 94)(62 95)(63 96)(64 97)(65 98)(66 99)(67 100)(68 101)(69 102)(70 103)(71 104)(72 105)(73 91)(74 92)(75 93)
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 41)(8 42)(9 43)(10 44)(11 45)(12 31)(13 32)(14 33)(15 34)(16 81)(17 82)(18 83)(19 84)(20 85)(21 86)(22 87)(23 88)(24 89)(25 90)(26 76)(27 77)(28 78)(29 79)(30 80)(46 113)(47 114)(48 115)(49 116)(50 117)(51 118)(52 119)(53 120)(54 106)(55 107)(56 108)(57 109)(58 110)(59 111)(60 112)(61 94)(62 95)(63 96)(64 97)(65 98)(66 99)(67 100)(68 101)(69 102)(70 103)(71 104)(72 105)(73 91)(74 92)(75 93)
(1 72 108 81)(2 73 109 82)(3 74 110 83)(4 75 111 84)(5 61 112 85)(6 62 113 86)(7 63 114 87)(8 64 115 88)(9 65 116 89)(10 66 117 90)(11 67 118 76)(12 68 119 77)(13 69 120 78)(14 70 106 79)(15 71 107 80)(16 35 105 56)(17 36 91 57)(18 37 92 58)(19 38 93 59)(20 39 94 60)(21 40 95 46)(22 41 96 47)(23 42 97 48)(24 43 98 49)(25 44 99 50)(26 45 100 51)(27 31 101 52)(28 32 102 53)(29 33 103 54)(30 34 104 55)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (16,81)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,76)(27,77)(28,78)(29,79)(30,80)(61,94)(62,95)(63,96)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(73,91)(74,92)(75,93), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,31)(13,32)(14,33)(15,34)(16,81)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,76)(27,77)(28,78)(29,79)(30,80)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,106)(55,107)(56,108)(57,109)(58,110)(59,111)(60,112)(61,94)(62,95)(63,96)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(73,91)(74,92)(75,93), (1,72,108,81)(2,73,109,82)(3,74,110,83)(4,75,111,84)(5,61,112,85)(6,62,113,86)(7,63,114,87)(8,64,115,88)(9,65,116,89)(10,66,117,90)(11,67,118,76)(12,68,119,77)(13,69,120,78)(14,70,106,79)(15,71,107,80)(16,35,105,56)(17,36,91,57)(18,37,92,58)(19,38,93,59)(20,39,94,60)(21,40,95,46)(22,41,96,47)(23,42,97,48)(24,43,98,49)(25,44,99,50)(26,45,100,51)(27,31,101,52)(28,32,102,53)(29,33,103,54)(30,34,104,55)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (16,81)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,76)(27,77)(28,78)(29,79)(30,80)(61,94)(62,95)(63,96)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(73,91)(74,92)(75,93), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,31)(13,32)(14,33)(15,34)(16,81)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,76)(27,77)(28,78)(29,79)(30,80)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,106)(55,107)(56,108)(57,109)(58,110)(59,111)(60,112)(61,94)(62,95)(63,96)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(73,91)(74,92)(75,93), (1,72,108,81)(2,73,109,82)(3,74,110,83)(4,75,111,84)(5,61,112,85)(6,62,113,86)(7,63,114,87)(8,64,115,88)(9,65,116,89)(10,66,117,90)(11,67,118,76)(12,68,119,77)(13,69,120,78)(14,70,106,79)(15,71,107,80)(16,35,105,56)(17,36,91,57)(18,37,92,58)(19,38,93,59)(20,39,94,60)(21,40,95,46)(22,41,96,47)(23,42,97,48)(24,43,98,49)(25,44,99,50)(26,45,100,51)(27,31,101,52)(28,32,102,53)(29,33,103,54)(30,34,104,55) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(16,81),(17,82),(18,83),(19,84),(20,85),(21,86),(22,87),(23,88),(24,89),(25,90),(26,76),(27,77),(28,78),(29,79),(30,80),(61,94),(62,95),(63,96),(64,97),(65,98),(66,99),(67,100),(68,101),(69,102),(70,103),(71,104),(72,105),(73,91),(74,92),(75,93)], [(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,41),(8,42),(9,43),(10,44),(11,45),(12,31),(13,32),(14,33),(15,34),(16,81),(17,82),(18,83),(19,84),(20,85),(21,86),(22,87),(23,88),(24,89),(25,90),(26,76),(27,77),(28,78),(29,79),(30,80),(46,113),(47,114),(48,115),(49,116),(50,117),(51,118),(52,119),(53,120),(54,106),(55,107),(56,108),(57,109),(58,110),(59,111),(60,112),(61,94),(62,95),(63,96),(64,97),(65,98),(66,99),(67,100),(68,101),(69,102),(70,103),(71,104),(72,105),(73,91),(74,92),(75,93)], [(1,72,108,81),(2,73,109,82),(3,74,110,83),(4,75,111,84),(5,61,112,85),(6,62,113,86),(7,63,114,87),(8,64,115,88),(9,65,116,89),(10,66,117,90),(11,67,118,76),(12,68,119,77),(13,69,120,78),(14,70,106,79),(15,71,107,80),(16,35,105,56),(17,36,91,57),(18,37,92,58),(19,38,93,59),(20,39,94,60),(21,40,95,46),(22,41,96,47),(23,42,97,48),(24,43,98,49),(25,44,99,50),(26,45,100,51),(27,31,101,52),(28,32,102,53),(29,33,103,54),(30,34,104,55)]])

C15×C22⋊C4 is a maximal subgroup of
C23.6D30  C23.15D30  C222Dic30  C23.8D30  Dic1519D4  D3016D4  D30.28D4  D309D4  C23.11D30  C22.D60  D4×C60

150 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D5A5B5C5D6A···6F6G6H6I6J10A···10L10M···10T12A···12H15A···15H20A···20P30A···30X30Y···30AN60A···60AF
order12222233444455556···6666610···1010···1012···1215···1520···2030···3030···3060···60
size11112211222211111···122221···12···22···21···12···21···12···22···2

150 irreducible representations

dim11111111111111112222
type++++
imageC1C2C2C3C4C5C6C6C10C10C12C15C20C30C30C60D4C3×D4C5×D4D4×C15
kernelC15×C22⋊C4C2×C60C22×C30C5×C22⋊C4C2×C30C3×C22⋊C4C2×C20C22×C10C2×C12C22×C6C2×C10C22⋊C4C2×C6C2×C4C23C22C30C10C6C2
# reps121244428488161683224816

Matrix representation of C15×C22⋊C4 in GL4(𝔽61) generated by

13000
03400
00340
00034
,
60000
06000
00129
00060
,
1000
0100
00600
00060
,
1000
05000
002954
005932
G:=sub<GL(4,GF(61))| [13,0,0,0,0,34,0,0,0,0,34,0,0,0,0,34],[60,0,0,0,0,60,0,0,0,0,1,0,0,0,29,60],[1,0,0,0,0,1,0,0,0,0,60,0,0,0,0,60],[1,0,0,0,0,50,0,0,0,0,29,59,0,0,54,32] >;

C15×C22⋊C4 in GAP, Magma, Sage, TeX

C_{15}\times C_2^2\rtimes C_4
% in TeX

G:=Group("C15xC2^2:C4");
// GroupNames label

G:=SmallGroup(240,82);
// by ID

G=gap.SmallGroup(240,82);
# by ID

G:=PCGroup([6,-2,-2,-3,-5,-2,-2,720,745]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽